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Abstract

The prime numbers are a mystery as no complete formula exist to
enumerate them. Existing visualization methods show prime numbers
as patterns in 2D space but these patterns are too complex to formulate.
We describe a novel 3D visualization approach that shows strong
natural patterns, e.g., sea shells, which should ease formulation.

1 Introduction

Personal and corporate security have become one of the biggest concern
in modern society. In order to increase security, to combat more and more
powerful hackers who make a living in stealing identities and corporate secrets,
it became necessary to create new highly secure encryption algorithms. The
cornerstone of this encryption is surprisingly, prime numbers.

The way encryption systems use prime numbers is through the concepts
of keys, specifically a public and a private key. The public key is the result of
the multiplication of two enormous prime numbers and the private key is the
two prime factors of the public key. Even for a computer, the calculation of
the prime factors of the public key is really difficult and can take years to
process. This is why systems are secure for now [1].

The reason prime numbers are used is that they are very mysterious as no
formula exists to generate them all. There exist some formulas to enumerate

1



limited sequences like the Mersenne method which uses this formula:

Mn = 2n − 1

It was using this method that the largest prime number was ever found [2].

274,207,281 − 1

Currently sequences of large prime numbers can only be enumerated using
very powerful computer farms and by waiting a very long time.

The holy grail in mathematics is to find the formula that could generate all
prime numbers. Many mathematicians have spent their whole life hunting
down this formula. Recently, they started looking into non-traditional ap-
proaches to crack the mystery. Stan Ulam and Robert Sacks used computers
to generate visual representations of prime number distributions in the hope
of seeing strong patterns. If one can see a pattern then one could hope to
find a formula for the pattern, however complex it is [9]. Using his namesake
spiral, Ulam observed patterns as diagonal lines, for most of which he found
a parametric formulation, and some of which could generate a very large
number of primes.[3]
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Figure 1: The Ulam Spiral [3].

The Sacks spiral is a variation of Ulam’s, using a different formula to create
the visualization of the prime numbers [3]. Sacks changed the square spiral
formula to an Archimedean spiral so that at each complete rotation the
perfect squares were on the positive x axis [4].
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Figure 2: The Sacks spiral [4].

Other mathematicians found natural patterns in their spiral, such as the
shell morphology or the organization of sunflower seeds. The study of
patterns in nature is known as spiral phyllotaxis. In the study of spiral
phyllotaxis, mathematicians found a recurring ratio number known has the
golden ratio. This ratio is wildly used in computer graphics to represent
plants and generate fractals [6].
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Figure 3: Computer generated fractal using the golden ratio.

My results use these principles to create a new and interesting way to
visualize primes in three dimensional space. My model is based on existing
formulas used to create 2D natural patterns such as sunflowers. By
extending these formulas for 3D visualization, elegant spirals similar to sea
shells can be observed. These strong and more discernible patterns, as
compared to 2D, provides a possible new path to the discovery of the
complete formulation of prime numbers.
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2 Prerequisite

The following knowledge is required to understand my prime number
visualization model:

• polar coordinate system,

• spherical coordinate system,

• basic understanding of Matlab’s 3D plotting functions,

• prime numbers,

• 2D spirals used to visualize prime numbers.

The Cartesian coordinate system is known to all but isn’t the only one use in
the world of mathematics. Other systems like the polar and spherical
coordinate systems use really different definitions of axis and coordinate to
visualize functions. For example, the polar coordinate system is a
two-dimensional system in which each point in the space is described by the
length of the vector originating from the reference point of the system
(origin) and the angle of the vector to the x axis of the Cartesian system.The
spherical coordinate system is its equivalent in 3D where the third dimension
is called elevation. Elevation correspond to the angle of rotation from the
reference direction.

Basic knowledge of primes and visualization methods will be required to
generate the prime distributions. There are many 2D spirals used for prime
number visualization [9]. The Vogel model is well known and has been used
to generate the sunflower pattern in computer graphic systems. This model
is a variant of the Fermat spiral, using only discrete points in the polar
graph. Using this approach Vogel observed that sunflower seeds grow in a
very efficient manner which can be formulated using the golden angle [8].
The golden angle is obtained as follows:

(360− 360

1.618...
) = 137.508...
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The Vogel spiral is defined as follows:

r(n) =
√
n

and
θ(n) = nψ

ψ ≈ 137.5

It is as variant of the Fermat spiral:

θ(n) = nψ

ψ ≈ 137.5

r =
√
θ

(a) The Vogel model [6] (b) The Fermat spiral [6]

Figure 4: The spiral used in the sunflower formula.
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Matlab Code

1 t i c
2 c l f
3 a l l P o i n t=c e l l (1 ,1000) ;
4 prime =1;
5 a l lPo intPr imeEx i s t=c e l l (1 , prime ) ;
6 square =1;
7 a l lPo in tSquare=c e l l (1 , square ) ;
8 a l lPo in tSphe r e=c e l l (1 ,1000) ;
9 f o r i =1:1000

10 %azimuth=i ∗1 .61803398875 ;
11 %e l e v a t i o n=i ∗1 .61803398875 ;
12 %r=s q r t ( e l e v a t i o n ) ;
13 %azimuth=i ∗137 .508 ;
14 %e l e v a t i o n=i ∗137 .508 ;
15 %r=s q r t ( e l e v a t i o n ) ;
16 azimuth=i ;
17 e l e v a t i o n=i ;
18 r=s q r t ( e l e v a t i o n ) ;
19 a l lPo in tSphe r e { i }=[azimuth , e l eva t i on , r ] ;
20 [ x , y , z ] = sph2cart ( a l lPo in tSphe r e { i } (1) , a l lPo in tSphe r e {

i } (2) , a l lPo in tSphe r e { i } (3) ) ;
21 a l l P o i n t { i } = [ x , y , z ] ;
22 %f f t ( gpuArray ( a l lPo in tSphe r e { i } ( : ) ) ) ;
23 %f f t ( gpuArray ( a l l P o i n t { i } ( : ) ) ) ;
24 view (270 , 90) ;
25 i f ( a l l P o i n t { i } (3) > 0)
26 s c a t t e r 3 (x , y , z , [ ] , [ 1 0 0 ] , ’∗ ’ ) ;
27 hold on ;
28 end
29 i f i sp r ime ( i )
30 a l lPo intPr imeEx i s t {prime}=[azimuth , e l eva t i on , r ] ;
31 i f ( a l l P o i n t { i } (3) > 0)
32 view (270 , 90) ;
33 [ x , y , z ] = sph2cart ( a l lPo intPr imeEx i s t {prime } (1) ,

a l lPo intPr imeEx i s t {prime } (2) , a l lPo intPr imeEx i s t {
prime } (3) ) ;
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34 s c a t t e r 3 (x , y , z , [ ] , [ 0 1 0 ] , ’∗ ’ ) ;
35 hold on ;
36 prime=prime +1;
37 end
38 end
39

40 i f rem( a l lPo in tSphe r e { i } (3) ,1 ) ==0
41 %i f rem( s q r t ( a l lPo in tSphe r e { i } (1) /137 .508) ,1 ) ==0
42 %i f rem ( ( s q r t ( a l lPo in tSphe r e { i } (1) /1 .61803398875) ) ,1 )

==0
43 a l lPo in tSquare { square }=[azimuth , e l eva t i on , r ] ;
44 view (270 , 90) ;
45 i f ( a l l P o i n t { i } (3) > 0)
46 [ x , y , z ] = sph2cart ( a l lPo in tSquare { square } (1) ,

a l lPo in tSquare { square } (2) , a l lPo in tSquare { square } (3) )
;

47 s c a t t e r 3 (x , y , z , [ ] , [ 0 0 1 ] , ’∗ ’ ) ;
48 hold on ;
49 square=square +1;
50 end
51 end
52 end
53 drawnow
54 toc
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Explication

In my Matlab code, we initialize 4 cell arrays: one for all numbers in the
spherical coordinate system, one for all numbers in the 3D Cartesian system,
one for the primes and one for the squares. Also, we initialize other variables
including ”i” for the FOR loop with a maximum count that can be varied for
each rendering. In my model, I use the following formulas to generate the 3D
scatter plots [12].

r(n) =
√
n

θ(n) = n ∗ 1.61803398875

ψ(n) = n ∗ 1.61803398875

r(n) =
√
n

θ(n) = n ∗ 137.508

ψ(n) = n ∗ 137.508

r(n) =
√
n

θ(n) = n

ψ(n) = n

Matlab stores the resulting matrix of calculations in the spherical coordinate
system cell array in. Then the built-in Matlab function sph2cart converts
these into Cartesian coordinate points.

x = r. ∗ cos(θ). ∗ cos(ψ)

y = r. ∗ cos(θ). ∗ sin(ψ)

z = r. ∗ sin(θ)

The program then plots the points using the scatter3 function at each loop
cycle. Each number category is colored differently.
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Figure 5: Color coding for each number category.

The built-in function isprime automatically identifies primes places the
information in a final cell array for rendering. We use a similar process for
identifying squares.

Figure 6: Spherical coordinate system [12]
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3 Mathematical Results

We started our search for a better visualization formula for primes by studying
existing spirals that mathematicians used. We used an empirical approach
of trial and error to find the best way to enhance prime number spiral
techniques. We first studied the 2D Ulam spiral, previously shown in Figure
1, to understand how it was generated. We then modified it for 3D rendering
by mapping the square spiral approach to a cube spiral by taking every 3rd
step into the z axis (as opposed to a sequence of x, then y axis and then
returning to the x axis).

Figure 7: My first variation of the 3D Ulam spiral.

Unfortunately this approach didn’t improve the visualization of prime
numbers. We then looked into other more promising approaches which used
polar coordinates. The most well known approach is Fermat’s spiral also
known in the discrete space as Vogel’s approach, previously shown in Figure
4. It is also called the sunflower approach since the visualization generates a
sunflower seed pattern. Interestingly Vogel used the golden angle in mapping
to polar coordinates, since this angle occurs naturally in sunflowers and
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many other natural phenomena. We were inspired by this method as a basis
for our 3D approach in the spherical coordinate system. Our first attempt in
3D rendering used the Vogel formula for the first two spherical dimensions
and simply the integer for the 3rd dimension:

r(n) =
√
n

θ(n) = n ∗ 137.508

ψ(n) = n

Figure 8: A 2D view of our first 3D rendering based on Vogel’s formula.
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Boucher Conjecture 1. By extending the Vogel model to 3D, more
systematic prime number patterns should be observable.

Observe the strong natural patterns resulting from our conjectured method,
show below:

(a) Interior view (b) Top view

Figure 9: Positive z quadrant view of a 1000 points of the Boucher spiral

2D visualization is inherently very limited as compared to 3D, since 3D offers
infinitely more view points. Human vision is highly effective in detecting the
faintest 3D pattern in nature. 3D visualization should in turn significantly
increase the likelihood of discovering strong systematic patterns.

In 2D prime visualization models, patterns are not strong enough to predict
succeeding prime numbers. In my model, patterns are more systematic.
Specifically, we observe that every other spiral line (arm) doesn’t contain
primes, which is significantly better than all other investigated spirals, e.g.,
Sacks, Ulam’s and variations of these.

A deeper study of the model should allow us to determine the equation for
the lines with prime numbers, allowing us to possibly predict large prime
numbers with more ease than with 2D approaches. Furthermore, this study
could explain an observed particularity: three successive prime-less lines.
This might be a macro-pattern that repeats itself if the spiral was grown
much further if we had access to more powerful computers.
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Boucher Conjecture 2. Observed patterns have natural analogues such as
sea shell morphologies and structures.

Interestingly the rendering, when viewed in 2D in the x-y plane, has a
striking similarity to the morphology of sea shells, specifically the Virginica
bivalve shell and others like Nuttall’s Lucine and Ark shells. We need to
make more research to see if this similarity is only a coincidence or the
actual morphological way that a shell forms in nature.

(a) Top view of the Lucine sea shell. (b) Interior view of Ark sea shells.

Figure 10: Photos of sea shells. Notice the similarity to the Boucher spiral.
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3.1 Equations and Images

We first modified the formula for Vogel’s model to put it in the spherical
coordinate system:

r(n) =
√
n

θ(n) = n

ψ(n) = n

We will call this the ”normal” formula. The total number of points
generated in the rendering affect the way we see the pattern of the sea shell
and the prime patterns. With a small amount of points, we can clearly
distinguish the repetition of a spiral line (arm) with primes followed by a line
with no primes. As we increase the number of points, the patterns become
more easily visible.

(a) Interior of the spiral (b) Top view

Figure 11: A rendering of 20 000 points of the normal formula.
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(a) Interior of the spiral (b) Top view

Figure 12: Displaying only the primes in the 1000 point rendering of the
normal formula

We then tried a variant of the ”normal” formula by using the golden ratio as
a multiplicative constant, to try to generate a stronger pattern for primes in
the spiral.

r(n) =
√
n

θ(n) = n ∗ 1.61803398875

ψ(n) = n ∗ 1.61803398875

(a) Interior of the spiral (b) Top view

Figure 13: 1000 points for the golden ratio formula
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One can observe in Figure 11, that by plotting only numbers in the positive
quadrant of z, only half of the sea shell is generated. Then when plotting
in both the positive and negative z quadrants, the two sides of the sea shell
appear back to back as can be seen in Figure 13. The two sides of the shell
are a perfect reflection of one another.

(a) Interior of the spiral (b) Top view

Figure 14: 10000 points for the golden ratio formula

We then used the golden angle as the multiplicative constant:

r(n) =
√
n

θ(n) = n ∗ 137.508

ψ(n) = n ∗ 137.508

(a) Interior of the spiral (b) Top view

Figure 15: 1000 points for the golden angle formula

18



When comparing the three approaches, we observe that in the case of the
golden ratio, a change in the orientation of the spin of the spiral. Notice also
that in the case of the golden angle, the pattern is more similar to a
sunflower than a sea shell, and that the prime number patterns are not as
visually strong as in the normal case. Hence, surprisingly the simple normal
approach produces the strongest prime number patterns.

(a) The golden ratio (b) Normal (c) The golden angle

Figure 16: Top view comparison with three different constants(1000 points).

(a) The golden ratio (b) Normal (c) The golden angle

Figure 17: Side view comparison with three different constants (1000 points)
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4 Conclusion

We faced a number of limitations. One important limitation is computing
power. I was limited to my home computer which is much much less
powerful than supercomputer farms used in encryption. I could not generate
long sequences of prime numbers within reasonable time with a home
computer. For example, once I reached approximately 10,000 points in my
spiral, I observed that the verification for the next prime number took 20
minutes and that this interval was exponentially increasing. I thus had no
hope to grow my spiral much further.

In terms of future work, I would like to improve my software to more quickly
identify prime patterns in the spiral, for example if I could first identify
spiral lines with no prime numbers this could accelerate the identification of
lines of interest containing prime numbers.

I would also like to investigate and understand why my visualization model
generates such strong similarity to the morphology of animals or plants such
as in sea shells.

With the advent of quantum computers, promising a huge jump in
computing performance, I hope that my model would be able to shed more
light on the mystery of prime numbers.

Given the encouraging results of 3D rendering, we should explore the use of
higher dimensional spaces. One could start by adding a 4th dimension: time.
One could then detect patterns in the time lapse rendering. However, one
wonders what could be discovered with even more dimensions, but only
computers could possibly detect patterns in hyperspace. Hyperspace
rendering could push Mathematics in a new direction, just like when great
mathematicians discovered the beauty of numbers though 2D visualization
functions. Hyperspace the final frontier, these are the voyages of
Mathematics, to explore strange new worlds, to seek out new conjectures and
theorems, to boldly go where no man has gone before. .
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